Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xin-Hua Li

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: lixinhua01@126.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.025$
$w R$ factor $=0.073$
Data-to-parameter ratio $=14.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(dimethylammonium) aquadioxalatocuprate(II) monohydrate

In the title compound, $\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}\right)_{2}\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the cations, anions and water molecules are linked by hydrogen bonds into a network structure. Two oxalate dianions and one water molecule are coordinated to the Cu atom and the geometry is square pyramidal.

Comment

The design and synthesis of supramolecular inorganic architectures exhibiting novel properties provide exciting new opportunities (Swiegers \& Malefetse, 2002; Johnson \& Raymond, 2001; Hof et al., 2002). In the synthesis of supramolecular inorganic architectures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Directional intermolecular interactions are the primary tools in achieving this goal and hydrogen bonding is currently the best among them (Zaworotko, 1997; Braga \& Grepioni, 2000). We report here the structure of the title compound, (I).

Compound (I) consists of dimethylammonium cations, $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2} \mathrm{H}_{2} \mathrm{O}\right]^{2-}$ anions and solvent water molecules. The geometry around the Cu atom is square pyramidal, arising from coordination by two oxalate dianions and a water molecule (Fig. 1). The cations, anions and water molecules interact through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) to generate a three-dimensional network (Fig. 2).

Figure 1
The asymmetric unit of (I) with the atom numbering, showing displacement ellipsoids at the 50% probability level.

Received 4 October 2005 Accepted 12 October 2005 Online 19 October 2005

Figure 2
A perspective view of the molecular packing of (I), with hydrogen bonds shown as dashed lines.

Experimental

Copper(II) chloride dihydrate $(0.04 \mathrm{~g}, 0.2 \mathrm{mmol})$ was dissolved in aqueous dimethylamine $(40 \%, 10 \mathrm{ml})$, and the solution was mixed with a dimethylformamide solution $(10 \mathrm{ml})$ of oxalic acid dihydrate $(0.03 \mathrm{~g}, 0.2 \mathrm{mmol})$ and $2,2^{\prime}$-dithiosalicylic acid ($0.07 \mathrm{~g}, 0.2 \mathrm{mmol}$). The reaction mixture was filtered. Blue prism-shaped crystals separated from the solution after about a month.

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}\right)_{2}\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=367.81$
Monoclinic, $P 2_{1} / c$
$a=11.7600(16) \AA$
$b=9.5328(13) \AA$
$c=15.3997(16) \AA$
$\beta=118.103(8)^{\circ}$
$V=1522.9(3) \AA^{3}$
$Z=4$
$D_{x}=1.604 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2706
\quad reflections
$\theta=2.0-25.1^{\circ}$
$\mu=1.48 \mathrm{~mm}^{-1}$
$T=298(2) \mathrm{K}$
Prism, blue
$0.50 \times 0.27 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.63, T_{\text {max }}=0.81$
7740 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.073$
$S=1.06$
2706 reflections
192 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9334(12)$	$\mathrm{Cu} 1-\mathrm{O} 6$	$1.9480(11)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$1.9640(12)$	$\mathrm{Cu} 1-\mathrm{O} 9$	$2.3540(15)$
$\mathrm{Cu} 1-\mathrm{O} 5$	$1.9377(12)$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$84.57(5)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 6$	$94.82(5)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 5$	$94.58(5)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 9$	$93.74(5)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 6$	$176.01(6)$	$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 6$	$85.34(5)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 9$	$95.78(6)$	$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 9$	$96.19(6)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 5$	$170.07(6)$	$\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{O} 9$	$88.19(5)$

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{~B} \cdots \mathrm{O} 7$	0.81	1.97	2.7443 (18)	160
$\mathrm{O} 10-\mathrm{H} 10 A \cdots \mathrm{O}^{\text {i }}$	0.81	2.03	2.8415 (18)	174
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 8^{\text {i }}$	0.90	2.25	2.929 (2)	132
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 7^{\mathrm{i}}$	0.90	2.13	2.907 (2)	144
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 10^{\text {ii }}$	0.90	1.88	2.776 (2)	175
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 3^{\text {iii }}$	0.90	2.24	3.065 (2)	152
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 4{ }^{\text {iii }}$	0.90	2.14	2.809 (2)	130
N1-H1A . ${ }^{\text {O }}$ 6	0.90	2.48	3.2006 (19)	137
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2$	0.90	2.12	2.896 (2)	143
$\mathrm{O} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O} 3^{\text {iii }}$	0.82	2.05	2.8525 (19)	167
$\mathrm{O} 9-\mathrm{H} 9 A \cdots \mathrm{O} 4^{\text {iv }}$	0.82	1.99	2.7722 (19)	158
Symmetry codes: $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$	$\begin{array}{r} \quad x,-y+\frac{1}{2}, z+\frac{1}{2} ; \\ \text { i) } \\ -x+2,-y+1,-z . \end{array}$		$-x+1, y+\frac{1}{2},-z+\frac{1}{2} ; \quad$ (iii)	

All H atoms were positioned geometrically and allowed to ride on their parent atoms, at distances of $0.82(\mathrm{O}-\mathrm{H}), 0.90(\mathrm{~N}-\mathrm{H})$ and $0.96 \AA(\mathrm{C}-\mathrm{H})$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ parent atom $)$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (grant No. Y404294) and the ' 151 ' Distinguished Person Foundation of Zhejiang Province.

References

Braga, D. \& Grepioni, F. (2000). Acc. Chem. Res. 33, 601-608.
Braga, D., Grepioni, F. \& Desiraju, G. R. (1998). Chem. Rev. 98, 1375-1386.
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2315.
Desiraju, G. R. (1997). Chem. Commun. pp. 1475-1476.
Hof, F., Craig, S. L., Nuckolls, C. \& Rebek, J. Jr (2002). Angew. Chem. Int. Ed. 41, 1488-1490.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Johnson, D. W. \& Raymond, K. N. (2001). Supramol. Chem. 13, 639-643.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Swiegers, G. F. \& Malefetse, T. J. (2002). Coord. Chem. Rev. 225, 91-102.
Zaworotko, M. J. (1997). Nature (London), 386, 220-226.

